
JOURNAL OF COMPUTATIONAL PHYSICS 10, 65-84 (1972) 

Information Loss and Compensation in Linear Interpolation 

RALPH SHAPIRO 

Air Force Cambridge Research Laboratories 
L. G. Hanscom Field, Bedford, Massachusetts 01730 

Received June 23. 1971 

A general operator of arbitrary order is developed for the purpose of minimizing 
the deleterious truncation and aliasing effects introduced by interpolation. The effects 
of interpolation are discussed for both uniform and mixed grid systems and the properties 
of the restoration operator are demonstrated by means of a series of computations on 
the sea-level pressure distribution around latitude circles. For geophysical applications, 
a low ordered operator is shown to be effective in restoring physically significant in- 
formation which is lost during interpolation. It is inferred from the properties of the 
restoration operator that it may find useful application in avoiding computational 
instability in cases where interpolation is involved. 

1. INTRODUCTION 

Interpolation occupies a prominent role in numerical weather prediction. It 
enters in the process of specifying the initial data over some regular network and 
is actively involved in the numerical integration of the finite difference equations. 
It is an essential process when used to obtain boundary information in overlapping, 
multiple-map representations of the Earth’s surface or in fine-mesh limited area, 
nesting problems. 

All interpolation procedures selectively alter the amplitude spectrum and 
frequently the phase spectrum as well. In some applications the alterations are 
of no consequence and may actually be beneficial. For example, the simplest 
linear interpolation acts as a low pass filter. Consequently, when used as part of 
an objective analysis procedure to obtain initial data over some regular array, 
it serves to damp the high-frequency, noise-bearing component of the data and 
thus may actually help preserve the physical integrity of the numerical solutions. 
On the other hand, when used to obtain boundary information essential in the 
numerical integration, the characteristics of the interpolation process may con- 
tribute to or initiate the development of numerical instability. It is common 
experience that small-scale instability tends to develop near the interpolation 
boundary of overlapping gridsystems, whether the overlap is between different 
map projections [3] or between differing resolutions [4]. Though it is not certain 
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that the instability is produced by the interpolation, it is certainly adversely 
affected by it; since in both cases the interpolation operates on one field which is 
then used in conjunction with an uninterpolated field. Thus, since the interpolation 
alters the spectrum, spurious gradients, especially in the short wavelengths, are 
introduced between the interpolated and noninterpolated fields. These spurious 
gradients will have a destabilizing effect on the computations and should be 
minimized. The purpose of this paper is to discuss a method of efficiently mini- 
mizing the deleterious effects of interpolation. The method consists essentially 
in finding the response or transfer function of the interpolation operator and 
modifying it by a series of simple, symmetrical linear filters which approximate 
the inverse of the response function. 

2. ONE-DIMENSIONAL INTERPOLATION 

Given some function Z(x), with data at uniformly spaced gridpoints i, i + I,..., 
we may express the interpolated value at any point i + r between i and i + 1 as, 

2&r = rZi+l + (1 - r) Zi 3 O<r<l. (1) 

If we express Z(x) in terms of Fourier components it is easily seen that the 
response function of the interpolation defined by (1) is given by 

p,(k) = [l - 4r(l - r) sin2(kLlx/2)]‘12, (2) 

where k = 27rlL is the wave number corresponding to a wave of length L and p0 
is the ratio of the amplitude of .&+? to that of Zi . 

The maximum value of 4r(l - r) is 1 and occurs for r = 3. Therefore, PO(k) is 
real and 0 < 1 PO(k)/ < 1 for all k. 

p,,(k) shows how the amplitude spectrum of Z(x) is altered by two-point linear 
interpolation. However, in as much as the spectrum of Z(x) is only defined over 
some domain, p,,(k) must be interpreted as if the operation defined by (1) had 
been performed for each point i + r throughout the same domain. Furthermore, 
the expression (2) has validity only if r is constant in this domain. 

It is apparent that for r near 4, the interpolation defined by (1) can produce 
considerable damping of Z(x), particularly for the higher wavenumbers. It is 
possible to restore much of the damping produced by (1) by applying an operator 
which approximates the inverse of (2). In order to maintain symmetry it is desirable 
to express this operator in terms of symmetrical three-point operators of the form 

zi = zi + $ p-1 + a+1 - zzi), (3) 

where S is a smoothing element to be determined. 
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The response function corresponding to (3) is 

1 - 2s sin2(kdx/2). (4) 

If we apply the operator (3) to (1) and use the approach outlined in a previous 
paper [5], we find that in order to produce the maximum restoration of damped 
amplitude without amplification of any wave component, S = -t/4, where 
t = 4r(l - r). Thus, the response function for the first level of restoration of 
two-point linear interpolation is 

p&4 = p&)(1 + (t/2) sin2 4, (5) 

where a = J&/2. The combined operator may be treated as a three-point operator 
acting on a two-point operator or as a single four-point operator whose coefficients 
are cubic functions of r. 

It is of interest to point out that the operator whose response function is given 
by p&z) is identical with the 4-point Lagrange interpolation formula for the case 
where r = s as well as for the trivial cases of r = 0 or 1. For all other values of r, 
the 4-point operator corresponding to the first level of restoration is superior to 
the 4-point Lagrange formula in the sense that 1 p1(u)/ > / L,(u)] for all r # Q, 0, 1 
for all a, where L,(u) is the response function corresponding to the 4-point 
Lagrange formula. The proof is given in Appendix A. 

The next higher level of restoration is found by the same procedure to involve 
a complex conjugate pair of smoothing elements and is represented by 

p2(u) = pl(u)(l - 2S2 sin2 a)(1 + 2S2 sin2 a), (6) 

where S22 = -3t2/32. The combined operator represented by p2(u) may be 
considered either as a single eight-point operator whose coefficients are polynomials 
of seventh degree in r or as a two-point operator in conjunction with three separate 
three-point operators. 

It is possible to continue the process of restoration indefinitely. The next higher 
order of restoration involves three additional three-point operators, and the 
h-th level of restoration involves h three-point operators, additional to those of 
the h - 1 level. Thus the operator at the h-th level of restoration consists of a 
two-point operator and 0 + 1 + 2 + 3 + a+. + h = $‘=,j three-point operators. 
Each of the appropriate cj smoothing elements can be determined level by level 
using the procedure outlined above. However, a simpler and more direct approach 
is outlined in Appendix B. 

Although the process of restoration can be carried out indefinitely, it is necessary 
to truncate the process. The optimum truncation level is dictated by the applica- 
tion, but it is possible to draw some conclusions from an examination of the 
response function for the first few levels of restoration. Figures 1 and 2 show 
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FIG. 1. Values of the response function p&C) for levels of restoration h = 0, 1, 2, 3 and 4 
for r = $. 
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FIG. 2. same as Fig. 1 for r = 4. 
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some values of the response function for levels of restoration h = 0, 1, 2, 3 and 4 
for r = 4 and 4. It is seen that pz represents a considerable improvement over pi 
which in turn represents a considerable improvement over p0 . However, p3 and p4 
show little improvement over pz for wavelengths greater than 4 grid intervals. In 
geophysical applications, where energy density spectra generally decrease with 
increasing frequency, there would appear to be little reason for extending the 
restoration beyond the second level. This conclusion is substantiated in a sub- 
sequent section where interpolation and restoration are performed on the sea-level 
pressure distribution. 

3. HETEROGENEOUS GRIDSPACING 

The expressions for the response functions for interpolation, with or without 
restoration, have been developed for the case where r is constant in the domain, 
or in other words, where we interpolate from a system of uniform gridspacing 
to another with the same spacing. These conditions are not satisfied in most 
applications, where frequently, one of the gridsystems is irregular. However, 
even if both are uniform but with different gridspacings, r is not a constant, but 
a function of space. In this case it is not a simple matter to find an analytical 
expression for the response function, since such an expression must allow for an 
unspecified number of gridpoints in the interpolation domain and incorporate 
the effects of the variation of r from point to point in this domain. We can, of 
course, perform a Fourier analysis on the original data and on the interpolated 
data and determine the set of numbers &7~)/A(k) which constitute the response 
function. However, it is not always possible, because of the shape of the domain 
in which we must operate to determine A(k), let alone a(k). Furthermore, if we 
were to determine A(k), the rationale for performing the interpolation would be 
obviated since we could directly determine the required value at any point from 
the Fourier phase and amplitude information. Therefore, let us assume that there 
exists for the case of variable r a series of expressions that are related in some 
unspecified way to &k)/A(k) and which have the property that they reduce to 
the response function (2) when r is constant. If we choose to represent &c)/A(k) 
by an expression which is simple and similar in form to (2) then we can find 
restoration operators comparable to (5) and (6) which are likely to have similar 
properties. We have arbitrarily chosen the expression 

po*(a, r) = [l - 4r,(l - t-J sin2 all/Z (7) 

to represent the response function /@)/A(k). In (7), r, is the value of r at the 
gridpoint 01. Since the choice of (7) was arbitrary we shall not try to justify it on 
any but pragmatic grounds. Furthermore, we recognize that it is only one of a 
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number of possible choices and not necessarily the best of these. Nevertheless, 
we shall show that the choice of (7) leads to reasonable restoration operators 
and what is more important to reasonable results. 

The expression (7) cannot be called a response function since it depends upon Y 
as well as wavenumber, however, it may be usefully interpreted as follows. At any 
gridpoint 01, the effect of two-point interpolation on the amplitude spectrum 
would be given by (7) if we were to interpolate throughout the domain at a series 
of gridpoints with a constant value of r equal to r, . At any other gridpoint 01 + p, 
we interpret (7) as if we had interpolated at a series of points throughout the domain 
with the value of r appropriate to the point cy + p. Since each gridpoint in the 
cx system has a specific value of r which may be different from every other value 
of r, the effect of carrying out two-point interpolation throughout the domain 
is to damp the same wave component by different amounts at each gridpoint. 
From a spectral point of view this process is tantamount to the introduction of 
wave components in the 01 domain that did not exist in the original i domain as 
well as altering the phases of the original wave components. Since the magnitude 
of the fictitious new components introduced by the interpolation, as well as the 
magnitude of the phase shifts, depends upon the difference in the amount of 
damping from one (II point to the next, these undesirable aspects of the interpolation 
can be minimized by the restoration process since in the limit all the original 
amplitudes (not completely removed by interpolation) are restored to their original 
values regardless of position. For any practical application, it can be shown by 
examination of the magnitude of the change of response function with r(l aph*/8r I) 
that the magnitude of the fictitious component for any level of restoration h > 0, 
is less than that for h = 0 for all components longer than the 3 grid-interval wave. 
Furthermore, when h > 1, the magnitude of the fictitious component can be 
shown to be less than that for h = 0 for all components, longer than the 2 grid- 
interval wave. The exception for the 2 grid-interval wave arises because for this 
component, ph* = 0 for r = & for all levels of restoration h, and inasmuch as 
0 < ph-1 d Ph* < 1, and ph * = 1 for r = 0 and 1 for all h, it follows that 
j aph*/ar 1 > 1 8po*/8r 1 in the vicinity of r = 4 for the 2 grid-interval wave com- 
ponent. The increase in the magnitude of the fictitious component for the 2 grid- 
interval wave when h > 0 should cause no difficulty since if the grid distance is 
properly chosen the 2 grid-interval wave should contain little or no physically 
significant information and should be removed or damped by some suitable filter. 
Thus, it appears likely that in problems such as the fine-mesh nesting problem, 
where 2-point interpolation is used to obtain the necessary boundary information 
and where of necessity r is a function of position, the fictitious component is an 
important element in boundary instability. With the aim of reducing the magnitude 
of these fictitious components, we examine the expressions for the quasi-response 
functions ph*(& Y) for h equal to 1 and 2 when r is a function of position. 
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pl*(u, r) = po*(a, r)(l - 2S, sin2 Mu), 

pa*@, r) = pl*(u, r)(l - 4S,” sin4 Mu), 

where now 

s, = -&/4M2, S,” = -3tu2/32M4, M = nm, 

(8) 

(9) 

n is the smallest integer for which M > 1 and m is the ratio of the 01 gridspacing 
to that of the original i gridspacing. 

4. MULTIDIMENSIONAL OPERATIONS 

In two dimensions we define a linear interpolation at the point i + r, j + p in 
the x, y plane as: 

&+r,i+a = P~.G+~ i+l + ~(1 - r) &j+l + (1 -P) G+v + (1 - PN - r) -G, (10) 

where r is defined (as in the one-dimensional case) as the fraction of the distance 
of the point i + r between the points i and i + 1 and p is similarly defined with 
respect to the points j and j + 1. If Z(x, y) is represented in two-dimensional 
waveform as 

zij = c + A cos k(X, - lp) cos W(Yi - e), 

where C is a constant, A is the amplitude of the two-dimensional wave with 
wave number k and phase q~ in the x-direction and wave number w and phase 0 
in the y-direction, the quasi-response function corresponding to (10) at the point 
(01, PI = (i + r,i + P) is 

where 

p,,*(k, w; a, /3) = [(I - t, sin2 a)(1 - fB sin2 b)]1/2, 

t, = 4r,(l - r,), 

43 = 4PB(l - PB), 
a = k AX/~, 

b = w Ay/2, 

(11) 

and the quasi-response functions corresponding to the restoration operations 
for h = 1 and 2 are 

Pl*(k, w; 01, P) = po*(k, w; a, /3)(1 - 2S,, sin2 M&(1 - 2S,, sin2 M,b), (12) 

pa*(k, w; 01, B) = pl*(k, w; a, /?)(l - 4S&! sin4 M,u)(l - 4S&, sin4 M&), (13) 
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where 
S,, = -t,/4MzZ; S,, = - tB/4MV2; 

S,2, = -3t,‘/32Mz4; S& = -3t,“/32Mw2; 

M, = nm, ; M, = urn, ; 

n and v are the smallest integers for which nm, and urn, are, respectively, equal 
to or greater than 1. m, and my are, respectively, the ratios of the distances of 
the point 01, /3 from i to the x grid distance, Ax, and from j to the y-grid distance, 
dy. The extension of these expressions to any number of dimensions is obvious. 

5. APPLICATIONS 

To determine the effectiveness of the restoration process in practice and in 
particular where m # 1, a number of simple one-dimensional experiments were 
carried out. They all involve the sea-level pressure distribution at 5 degree longitude 
intersections at latitudes 35, 45 and 55N on two separate dates, Dec. 22, 1969 and 
Jan. 9, 1970. 

In the first experiment, the original data Pi , (i = 1,2,..., 72) are transformed 
to pz using (1). Five different gridspacings are used for the (II gridsystem. These 
five systems each have their first point in common; namely, the point corresponding 
to i = 1 + AX/~. The spacing of each of the 5 systems is then determined by 
dividing the latitude circle into 70,60,50,40 and 36 equal grid intervals respectively. 

TABLE1 

Mean square differences Do = l/72 Cl:, (Pi - Pi)z mb2 and D, = l/72 C:l, (Pi - I!# mE’ 
for three latitudes on two dates for five grid densities N 

N = 70 N = 60 N = 50 N = 40 N= 36 

Dec. 
35N 
45N 
55N 

Jan. 
35N 
45N 
55N 

DO DZ 

0.39 0.09 
0.72 0.11 
0.42 0.06 

1.02 0.27 
1.07 0.40 
0.70 0.10 

Do 0% Do Dz D,, D, Do D, 

0.51 0.28 0.58 0.21 1.05 0.58 1.45 0.81 

1.03 0.27 1.26 0.33 2.39 0.90 3.42 1.19 
0.65 0.23 1.04 0.38 1.48 0.51 1.94 0.87 

1.29 0.12 1.64 0.89 1.92 1.31 4.20 2.75 
1.05 0.33 2.31 1.36 3.36 2.19 4.38 3.05 
0.95 0.31 0.94 0.32 2.47 0.75 2.90 0.82 

AVE 0.72 0.17 0.91 0.36 1.30 0.58 2.11 1.04 3.05 1.58 
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Each of the 30 sets of p, are then transformed to p$ , again making use of (1). 
Thus, each set of pS consists of doubly interpolated pressure values at the original 
72 i-gridpoints. The first interpolation is from a 72-gridpoint system with grid- 
spacing Ax to a system occupying the same physical domain with a smaller number 
of gridpoints. Therefore, in the first interpolation m > 1. However, in the second 
interpolation, proceeding from the (Y to the i gridsystem, m < 1. 

In addition to the 30 sets of pi data, 30 sets of pi data were also evaluated by 
separate transformations of the FM data. That is, using the stencil corresponding 

TABLE II 

Variance of original pressure E(in mba) and the relative variance as a fraction of E as a function 
of grid density Nat each stage in the interpolation and restoration process 

A0 = E/E; A, = E/E; B. = g/E; B, = i/E 

35N 

Dec. 

45N 55N 35N 

Jan. 

45N 55N Ave. 

56.0 239.5 360.6 136.7 254.6 288.7 

0.97 0.98 0.99 0.97 0.98 0.98 0.98 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.94 0.97 0.98 0.95 0.97 0.96 0.96 
0.99 1.00 1.00 0.99 1.00 1.00 1.00 

0.98 0.98 0.99 0.98 0.99 0.98 0.98 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.95 0.96 0.98 0.96 0.98 0.95 0.96 
0.99 0.99 1 .oo 0.99 1.00 1.00 1.00 

0.96 0.98 0.99 0.97 0.98 0.99 
1.00 1.00 1.00 1.00 1.00 1.00 
0.91 0.95 0.98 0.93 0.96 0.96 
0.98 1.00 1.00 0.98 0.99 1.00 

0.97 0.99 0.99 0.99 0.99 0.97 
0.99 1.00 1.00 1.01 1.00 0.99 
0.91 0.94 0.96 0.94 0.95 0.92 
0.98 0.99 1 .oo 1.00 1.00 0.98 

0.97 0.98 0.99 0.94 0.97 0.98 
1.00 1.00 1.00 0.96 0.99 1.00 
0.88 0.92 0.96 0.88 0.92 0.90 
0.99 0.99 1.00 0.96 0.98 1.00 

0.98 
1.00 
0.95 
0.99 

0.98 
1.00 
0.94 
0.99 

0.97 
0.99 
0.91 
0.99 
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to the operator, Eq. (9), the pU data are restored to Pa . The latter data are then 
interpolated onto the i gridsystem, using (1) and these last values are then restored 
again using the restoring operator corresponding to (9). In the first use of the 
restoring operator to obtain 14, , m > 1 and consequently none of the pU values 
are omitted in the process of restoration. However, in the restoration process to 
obtain pi , f < m < 1, and therefore the value of A4 used in (9) is obtained with 
n = 2. In the discussion which follows, unless specified otherwise, it should be 
understood that interpolation with restoration refers to the second level of resto- 
ration, equivalent to an g-point operator in one dimension. 

Inasmuch as Pi , pi and pi all involve data at the same gridpoints, it is possible 
to compare the data and determine both the effects of interpolation and restoration 
from one gridsystem to another and back to the original system. Table I 
which contains the means of the squared differences l/72 C (Pi - psi,, and 
l/72 C (Pi - pJ2, h s ows such a comparison. It is apparent that the restoration 
process goes a long way toward recovering information lost in the process of 
interpolation and that the restoration process is most effective when N, the number 
of gridpoints in the 01 domain is greatest. 

Table II shows the variance of the original Pi data as well as the fraction of the 
original variance at each step in the interpolation and restoration process. With 
only one interpolation (A,,) around 2 to 3 % of the variance is lost, but the resto- 
ration process (A,) effectively recovers almost all of the original variance. With 
the second interpolation (B,) an additional 2 to 6 % of the variance is lost, but 
the doubly interpolated and restored values (B,) still contain almost all of the 
original variance. 

Figure 3 demonstrates the spectral properties of interpolation, with and without 
restoration, using the December data for 45N. The upper part of the figure shows 
the variance spectrum of Pi on a log-ordinate scale. The remaining curves are 
relative variance spectra showing the variance of Pi (represented by crosses) and 
the variance of pi (represented by open circles) as a fraction of the original variance 
in wave numbers 1-18. Because of the very small values of variance of Pi in the 
high wave numbers, the relative spectral estimates for these wave numbers tend 
to be erratic and have been omitted from the figure. 

It is apparent that without restoration, considerable loss of variance is expe- 
rienced in the baroclinically important wavenumbers (4-8). However, with resto- 
ration, the variance in each of the wave numbers (l-8) is effectively restored to 
its original value. There is some damping, even with restoration, at the higher 
wave numbers, but in every case the restored spectral values are closer to the 
original than the unrestored values. 

The original data Pi is a specific sampling from some unknown continuous 
function P(X). P(X) undoubtedly contains information that is not resolved by Pi 
and which is fictitiously represented as longer wavelength components in the Pi 
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FIG. 3. The uppermost curve is the variance spectrum of the sea-level pressure (PJ around 
45N on 22 Dee 1969 evaluated from observations at every 5 deg of longitude. The remaining 
curves show the relative variance (as a fr-action of the spectral estimate of Pi) of doubly interpolated 
pressures (Pi, crosses) and doubly interpolated and restored pressures (pi, open circles) for 
various interpolation gridpoint densities N. 

spectrum. Furthermore, if some set of P, were known, where P, differs from Pi 
only by some constant shift in position, the variance spectrum of P(X) obtained 
from P, would undoubtedly be somewhat different from that obtained with Pi 
because the amount and distribution of aliased variance would undoubtedly be 
different. As a result of such aliasing, some of the relative spectral values in Fig. 3 
exceed unity both in the unrestored as well as restored spectra. Furthermore, the 
fictitious components referred to above which are introduced by 2-point inter- 
polation will also contribute to minor alterations in the spectra. However, inas- 
much as the restoration process reduces the magnitude of the aliased variance 
contributed from both of these sources, it produces spectra in which not only 
the amplitudes but also the phases are more nearly the same as those of the original 
values. For example, for the case of N = 70, the mean phase shift for wave 
numbers 1 through 6 in terms of 360 degrees per wavelength is less than 0.01 degrees 
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for pi , but 0.40 degrees for pi ; for wave numbers 7 through 12, the comparable 
numbers are 0.38 and 3.45 degrees; and for wave numbers 13 through 18, the 
phase shifts average 1.97 and 6.98 degrees respectively. Thus, for those waves 
containing most of the variance, the phase shifts with restoration are negligible, 
while those without restoration, although small, are not negligible. For the higher 
wave numbers, which contribute little to the total variance, the phase shifts may 
not be negligible even with restoration, but they are substantially reduced by 
the restoration. Thus it appears, both from the direct comparisons between Pi 
and Pi and pi as well as from the spectral distributions of these parameters, that 
the restoration operation succeeds in undoing much of the damage introduced by 
interpolation. Furthermore, from the spectral results, it appears that with second- 
level restoration, significant damping of amplitude and change of phase is limited 
to the higher wave components. These components not only contain little variance 
in the original data, but the variance that is present is undoubtedly highly con- 
taminated by noise. Thus, the damping of these components may actually be 
beneficial. 

The results presented up to this point were all obtained with the initial inter- 
polation domain (CL) containing fewer gridpoints than the original gridpoint 
system (i). In these results, N, the number density of the interpolation domain, 
takes on the values 70, 60, 50, 40 and 36, while the original data are distributed 
over 72 gridpoints. Thus the interpolation grid-lengths are all greater than the 
5 degree grid-length of the original data. In the next set of results, the same original 
data are interpolated onto a series of domains wherein the gridlengths are smaller 
than 5 degrees, and which contain 74, 86, 104, 130 and 144 gridpoints, respectively. 

TABLE III 

Mean square differences D, = l/72 .Z:“, (Pi - pi)2 mb8 and De = l/72 xl”, (Pi - f$ mb2 
for grid densities N 

N = 74 N= 

Dec. 
35N 
4.5N 
55N 

Jan. 
35N 
45N 
55N 

Do D, DO 

0.21 0.03 0.19 0.03 0.18 0.02 0.08 0.00 0.12 0.00 
0.54 0.09 0.53 0.05 0.29 0.02 0.23 0.00 0.25 0.00 
0.56 0.12 0.36 0.05 0.20 0.02 0.16 0.00 0.17 0.00 

0.78 0.38 0.49 0.10 0.40 0.06 0.21 0.01 0.31 0.00 
0.87 0.22 0.82 0.18 0.40 0.05 0.36 0.01 0.35 0.00 
0.69 0.15 0.40 0.05 0.28 0.03 0.17 0.00 0.23 0.00 

0.61 0.16 0.46 0.08 0.29 0.03 0.20 0.00 0.24 0.00 

86 N= 104 N = 130 

D, D, D, D, Dz 

N= 144 

Do D, 
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The ratios of these new gridlengths to the basic data grid-interval were chosen 
to be approximately equal to the reciprocals of the comparable ratios in the first 
experiment. The first point of each 01 set was placed at the same point as in the 
first experiment; namely, one-third the distance between i = 1 and i = 2. Table III 
which is comparable to Table I summarizes the results of the second experiment. 

The benefits of restoration are even more apparent in these new results. The 
mean-square differences of both the interpolated and the interpolated and restored 
values generally decrease with increasing N. However, the decrease of this “error” 
is greater with the restored values, resulting in essentially no “error” for the higher 
values of N. 

An analysis of the total variance of the doubly interpolated and restored pres- 
sures (pi), shows that it is essentially identical to that of the original data (within 
0.2 % on the average). But the variance of the unrestored pressures differs from 
the original variance by 2.5 % on the average. 

The spectral properties of p$ and pi are shown in Fig. 4 for N greater than 72. 
The uppermost spectrum which is the same as that in Fig. 3 is repeated for ease 
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FIG. 4. Same as Fig. 3 for N greater than 72. 
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in reading. It is apparent from the relative spectra in Fig. 4 that there is little 
aliasing in either the restored or unrestored spectral estimates, especially for the 
higher values of N. Consequently, the spectra of the restored values are virtually 
identical to the original spectra. The lack of aliasing is a direct consequence of 
the smaller gridspacing and increased resolution of the interpolation domains. 
This feature of the results is clearly shown in Table IV which compares the magni- 
tudes of the departures of amplitude and phase for doubly interpolated data, 
both with and without restoration, as a function of wavelength and number 
density of the interpolation domain. 

TABLE IV 

Average of the magnitude of the departures of amplitude (in mb) [dA] and phase (in deg) [&I 
from the original values after interpolation, both with and without restoration for N = 74 and 130” 

N = 74 N= 130 

Wavenumbers 

I-18 19-36 l-18 19-36 

[AAl 0.14 0.13 0.09 0.08 
[AA*1 0.02 0.09 0.01 0.02 
[ATI 2.8 31.5 1.1 12.9 
%*I 0.5 20.7 0.3 1.4 
IAA*l/IAAl 0.12 0.69 0.07 0.23 
tA!~*l/I&l 0.18 0.66 0.24 0.11 

a The asterisk indicates restored values. 

It is apparent from Table IV that there is a substantial decrease in the magnitude 
of both the phase and amplitude “error” with N = 130 as compared with N = 74, 
regardless of whether the restoration operation has been applied. If we examine 
the relative “error,” shown as a ratio of the magnitudes of the restored to unrestored 
values, we see that the benefit of restoration is very pronounced for N = 74 for 
the low wavenumbers. The relative amplitude and phase error are, respectively, 
0.12 and 0.18. However, for the high wavenumbers, substantial “error” remains 
even after restoration; the relative errors being 0.69 and 0.66, respectively. With 
N = 130, the relative “error” in the low wavenumbers is almost the same as 
that with N = 74. Although there is some decrease in the relative amplitude 
error (0.12 to 0.07), there is an increase in the relative phase error (0.18 to 0.24). 
On the other hand, there is a large improvement in the relative error of the high 
wave numbers with N = 130 for both amplitude (0.69 to 0.23) and phase (0.66 to 
0.11). 
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6. RESULTS WITH HIGHER ORDERS OF RESTORATION 

It was tentatively concluded on the basis of Figs. 1 and 2 that if the original 
data contained only minor contributions from the shorter wave components, 
orders of restoration higher than h = 2 would not be useful. To test this hypothesis, 
results comparable to those shown in Tables I and III, where the restoration was 
carried to order h = 2, were extended to orders h = 3 and 4. The average results 
for both dates and all three latitudes are shown in Fig. 5, along with the com- 

36 40 50 M) 70 74 66 104 130 144 

GRID POINT DENSITY N 

FIG. 5. Mean-square differences (in mb*)(&) for h = 0, 1,2,4. Values are the averages for 
all three latitudes for both dates. Ds which is not shown falls between D, and D, . 

parable results for h = 0 and 2 taken from Tables I and III as well as the results 
for h = 1. It is readily apparent that there is little or no reduction of the “error” 
for h = 3 or 4 as compared with h = 2. However, the results with h = 2 represent 
a substantial improvement over those with h = 1 which in turn represents an 
even larger improvement over those with h = 0. These results are, therefore, 
completely in agreement with the conclusion derived from Figs. 1 and 2. 

8. CONCLUSIONS 

A general operator of arbitrary order h has been developed which is “ideal” 
in the sense of restoring a field subjected to linear interpolation as close as desired 
to its original spectral distribution without amplifying any wave component. For 
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geophysical applications a low ordered operator with h = 1 or 2 has been shown 
to be very effective in restoring the physically significant components. The greatest 
virtue of the restoration operator, however, may lie in its damping of the fictitious 
components introduced by interpolation in domains with differing gridspacings. 
To the extent that such fictitious components contribute to computational insta- 
bility in finite-difference solutions, the restoration process may be found to be an 
effective palliative. 

APPENDIX A 

Using the same notation as in (l), the stencil for the 4-point Lagrange inter- 
polation operator is 

2, 
t+r 

= -4~ - l)(r - 2) z,- 

6 
21 

+ (r2 - l)(r - 2) Z, 

2 1 
-a + ;e - 2) zi+l + ‘k2g 1) zi+2 . 

(14 

The square of the response function corresponding to (1A) is 

L12(a) = 1 - J&(1 - r2)(2 - r) sin4 a - Vr2(1 + r)(l - r)” (2 - r) sin6 a, (2A) 

whereas p12(a), the square of the response function corresponding to the first 
level of restoration of two-point linear interpolation, is 

pr2(a) = 1 - 12r2(1 - r)” sin4 a - 16r3(1 - r)3 sin6 a. (3A) 

Since 0 < r < 1, the coefficients of the (-sin4 a) and (-sin6 a) terms are 
positive for both LIZ(u) and p12(u). The ratios of the coefficients of p12(u) divided 
by the corresponding coefficients of L12(u) are equal and are given by 

F(r) = 9r(l - r)/(l + r)(2 - r). (4A) 

The maximum value of F(r) = 1 and occurs with r = 4. Thus, for r = i, pi(u) 
and L,(u) are identical, but for all other values of r, F < 1. Thus, since the coeffi- 
cients of the (-sin4 a) and (-sin6 a) terms are smaller with p12(u) than with 
LIZ(u) for all r except r = 4, j pI( > I &(a)/. 
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APPENDIX B 

The response function for two-point linear interpolation is from (2) 

PO(a) = (1 - t sin2 u)li2. W 

We wish to find a series of symmetrical three-point operators of the form of (3) 
whose response functions are of the form (4). We call this combined operator 
n,“.,=, 0j.h 3 where h indicates the level of restoration and j is an index. If we 
wish to restore the amplitude of each wave component damped by (1) without 
amplifying any component, then the response function I$,=, R3,s , corresponding 
to n Ojh should approximate the inverse of p,,(u). That is, 

$I1 4.d~) g (1 - t sin2 a)-l/z. (33) 

The right side of (2B) is approximated by the series 

t l-3 1 + 2 sin2 a + m t2 sin4 a + l-3.5 
2.4-6 

t3 sin6 a + *a* 

+ 1 * 3 * 5 . .a* * - (2h 1) 
2 - 4 * 6 . -*- . (2h) 

th sin2h u 

for all values oft and a except where t sin2 a = 1. Thus, p&z) = p,,(u) l$,z, R&u) 
approaches 1 as h becomes large except for the two grid-interval wave for the 
case of t = 1 (r = $), for which ph(u) remains zero. 

The series above can be expressed as a product of terms, 

i 
1 + i sin2 a)(1 + 7 sin4 a)(1 + g sin6 u) 

27P 
X ( 1 + 128 sm8 u) X **a x (1 + Chth sin2h a) 

minus terms of higher order than th sin2h a. The coefficients C, , C, ,..., C, are 
determined so that pA(u) = 1 minus terms of higher order than th sin2h a. 

It is apparent that the above product of terms is Hi=, R,(u), where 

R*(u) = 1 + Chth sin2h a = fi (1 - 2Sj, sin2 a). 
kl 

(3B) 
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The system (3B) consists of h equations for the h unknown values of S,, . These 
equations are 

i sj = 0, 
j=l 

c SJ, = 0, j # k, 
j=1*2,...,h-1, 
k=2,3 s..., h, 

c a-9 s, = 0, j#k#m #*a- #p, 
i=l,2..... h+l-P. 
1;=2,3 ,...I h+2-P. 

m=3.4 . . ..I h-+3-p, 

, 
D=P.P+1*....7!. 

s,s2s3 *'- S,, = (-t/2)h c, . 

It is apparent from (3B), however, that the h values of Sj are the h roots of 
(- t/2)h Ch and are giVeII by (See, for eXaI@e, [2]) 

Sj= ]~@‘]exp[i(~+~)], j= 1,2 ,..., h. (4B) 

We see from (4B) that when h is odd, one value of S is real and the remaining 
values form complex conjugate pairs. When h is even, all values of S form complex 
conjugate pairs. Furthermore, if there is a real root it lies on the negative real 
axis of the complex plane and the complex roots have directions such that for 
any h the complex plane is divided into equal segments by all h roots. 

It is a relatively simple matter to find all Sj, for any level of restoration h. 
We have from (lB), (2B) and (3B), 

ph@) = ph-l(a) &da). (5B) 

If we know ~~-~(a), Ch is easily determined from the series expansion of (1B) 
and the series approximation to (2B) using the requirement that C, is such as to 
eliminate the th sin2h a term from the expansion of ~~(a). Sj can then be determined 
directly from (4B) for any level of restoration, h. Once all Sj are known, the 
restoration process can be carried out as &,j successive applications of the 
3-point operator (3) to the field of &ii7 or as a single operator acting on zi and 
involving 2(1 + cj) points. 

The first derivative of the function representing two-point linear interpolation 
corresponds to a forward difference and thus depends upon whether the approach 
to the point i is from the right or left. It is easily seen, however, that the first 
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derivative of the function representing any level of restoration is continuous at 
the endpoints. From (1) and (3) we have 

d+J = .i+, + q (.%-1+7 + &+l+T - 2&i,,) 

+ y CL,, + .i+,+r - 2&+,), 

where B i+r = Z,+l - Zi and S;,, = 2r - 1. 
As r approaches zero and i is approached from the right 

(6B) 

($+J + (& = &(zi+l - Z&,) (7B) 

Furthermore, as I -+ 1, the function (.$,+J + (.$)’ which is also found by 
substitution into (6B) to equal $(Zi+l - Zi-l). Similarly, for the second level of 
restoration we have 

where 

CW 

From the definition of S,,, and S,,, we find by substitution of (9pJ into $$B) that 
when the point i is approached either from the right or left, (&)’ = (2,)’ and, 
therefore, the first derivative of the function representing the second level of 
restoration is also continuous at the endpoints. Si$larly, it can be shown that 
the first de$ative of any higher level of restoration (.&+,)‘, can be reduced to a form 
equal to (&+T)’ plus terms involving products of powers of f. Since all such terms 
involving products of powers oft reduce to zero when r equals zero or one, it can be 

-h 

shown that (&,.+.)’ is cmtinuous at the endpoints for any level h. Similarly, it can 
also be shown that (.&+,.)” is not continuous at the endpoints for any level h. 

ACKNOWLEDGMENTS 

I am indebted to my colleague Dr. C. H. Yang for many fruitful discussions, and for his efforts 
in rescuing me from the morass of mixed gridspacings. 



84 SHAPIRO 

REFERENCES 

1. M. hNAMOWIT2 Am I. A. STEGUN, (Eds), “Handbook of Mathematical Functions.” Table 
26.11, 991, NBS Appl. Math. Ser. 55, U. S. Dept. Commerce, Washington, DC, 1964. 

2. G. H. HARDY, “A course of pure mathematics,” 10 ed., University Press, Cambridge, England, 
1958. 

3. N. A. PHILLIPS, Mon. Wea. Rev. 87 (1959), 333. 
4. M. A. SHAPIRO AND J. J. O’BRIEN, J. Appl. Meteorol. 9 (1970), 345. 
5. R. SHAPIRO, Rev. Geophys. and Space Phys. 8 (1970), 359. 
6. R. SHAPIRO, Compensation of interpolation by linear filter, Phys. Sci. Res. Pap. No. 443, 

AFCRL-71-0058, Air Force Systems Command, L. G. Hanscom Field, Bedford, MA, 1971. 


